A serendipitous observation in a Chemical Engineering lab at Penn Engineering has led to a surprising discovery: a new class of nanostructured materials that can pull water from the air, collect it in pores and release it onto surfaces without the need for any external energy.
A serendipitous observation in a Chemical Engineering lab at Penn Engineering has led to a surprising discovery: a new class of nanostructured materials that can pull water from the air, collect it in pores and release it onto surfaces without the need for any external energy. The research, published in Science Advances, was conducted by an interdisciplinary team, including Daeyeon Lee, Russell Pearce and Elizabeth Crimian Heuer Professor in Chemical and Biomolecular Engineering (CBE), Amish Patel, Professor in CBE, Baekmin Kim, a postdoctoral scholar in Lee’s lab and first author, and Stefan Guldin, Professor in Complex Soft Matter at the Technical University of Munich. Their work describes a material that could open the door to new ways to collect water from the air in arid regions and devices that cool electronics or buildings using the power of evaporation.
“We weren’t even trying to collect water,” says Lee. “We were working on another project testing the combination of hydrophilic nanopores and hydrophobic polymers when R Bharath Venkatesh, a former Ph.D. student in our lab, noticed water droplets appearing on a material we were testing. It didn’t make sense. That’s when we started asking questions.”
Those questions led to an in-depth study of a new type of amphiphilic nanoporous material: one that blends water-loving (hydrophilic) and water-repelling (hydrophobic) components in a unique nanoscale structure. The result is a material that both captures moisture from air and simultaneously pushes that moisture out as droplets.
Read more at University of Pennsylvania School of Engineering and Applied Science
Image: Research team including Daeyone Lee (left), Amish Patel (center) and Stefan Guldin (right) (photo provided by Penn Engineering). (Credit: Penn Engineering)