A team of researchers including Rice University’s James Tour and Shichen Xu has developed an ultrafast, one-step method to recover rare earth elements (REEs) from discarded magnets using an innovative approach that offers significant environmental and economic benefits over traditional recycling methods.
A team of researchers including Rice University’s James Tour and Shichen Xu has developed an ultrafast, one-step method to recover rare earth elements (REEs) from discarded magnets using an innovative approach that offers significant environmental and economic benefits over traditional recycling methods. Their study was published in the Proceedings of the National Academy of Sciences Sept. 29.
Conventional rare earth recycling is energy-heavy and creates toxic waste. The research team’s method uses flash Joule heating (FJH), which rapidly raises material temperatures to thousands of degrees within milliseconds, and chlorine gas to extract REEs from magnet waste in seconds without needing water or acids. The breakthrough supports U.S. efforts to boost domestic mineral supplies.
“We’ve demonstrated that we can recover rare earth elements from electronic waste in seconds with minimal environmental footprint,” said Tour, the T.T. and W.F. Chao Professor of Chemistry, professor of materials science and nanoengineering and study corresponding author. “It’s the kind of leap forward we need to secure a resilient and circular supply chain.”
Read More at: Rice University
The research team’s method uses flash Joule heating. (Photo Credit: Jeff Fitlow/Rice University)