Frequent occurrence of both anthropogenic pollution and natural dust in East Asian imposes great impact on regional air quality, human health and climate. Till now, their interaction and consequent effect on the dust morphology remain statistically unclear because even though traditional filter-based bulk sampling method can provide accurate chemical compounds, it cannot distinguish the mixing state of chemicals with dust particles.
articles
Research shows black licorice packs a potent punch
Black licorice. You either love it – or you hate it. But one Western researcher is offering a reason to pass the next time you think about reaching for that black licorice jelly bean, twist or whip – your health.
Hybrid Digital-Analog Circuits Can Increase Computational Power of Chaos-Based Systems
New research from North Carolina State University has found that combining digital and analog components in nonlinear, chaos-based integrated circuits can improve their computational power by enabling processing of a larger number of inputs. This “best of both worlds” approach could lead to circuits that can perform more computations without increasing their physical size.
Computer scientists and designers are struggling to keep up with Moore’s law, which states that the number of transistors on an integrated circuit will double every two years in order to meet processing demands. They are rapidly reaching the limits of physics in terms of transistor size – it isn’t possible to continue shrinking the transistors to fit more on a chip.
Fifty years ago, a historic balloon launch that changed the way we see the ozone layer
From atop this grassy mesa in 1967, scientists with the federal Environmental Science Services Agency carefully launched a weather balloon carrying a new instrument that could measure ozone levels from the ground to the very edge of outer space -- and radio the data back to a ground receiver.
Long-term fate of tropical forests may not be so dire
Tropical rainforests are often described as the “lungs of the earth,” able to essentially inhale carbon dioxide from the atmosphere and exhale oxygen in return. The faster they grow, the more they mitigate climate change by absorbing CO2.
This role has made them a hot research topic, as scientists question what will happen to this vital carbon sink long-term as temperatures rise and rainfall increases.
Conventional wisdom has held that forest growth will dramatically slow with high levels of rainfall. But CU Boulder researchers this month turned that assumption on its head with an unprecedented review of data from 150 forests that concluded just the opposite.
When bridges collapse: Stanford researchers study whether we're underestimating the risk
The United States is considering a $1 trillion budget proposal to update infrastructure, including its crumbling bridges. An obstacle to spending the money wisely is that the current means of assessing bridges may underestimate their vulnerability, according to a new study published in the Journal of Infrastructure Systems.
Case in point is a bridge along California’s iconic Big Sur coast, which collapsed in March, isolating communities and costing local businesses millions of dollars. Although California’s recent unprecedented rains were likely to damage infrastructure, standard risk assessments made it hard to identify which bridges were most vulnerable.