• Climate models may be overestimating the cooling effect of wildfire aerosols

    Whether intentionally set to consume agricultural waste or naturally ignited in forests or peatlands, open-burning fires impact the global climate system in two ways which, to some extent, cancel each other out. On one hand, they generate a significant fraction of the world’s carbon dioxide emissions, which drive up the average global surface temperature. On the other hand, they produce atmospheric aerosols, organic carbon, black carbon, and sulfate-bearing particulates that can lower that temperature either directly, by reflecting sunlight skyward, or indirectly, by increasing the reflectivity of clouds. Because wildfire aerosols play a key role in determining the future of the planet’s temperature and precipitation patterns, it’s crucial that today’s climate models — upon which energy and climate policymaking depend — accurately represent their impact on the climate system.

    >> Read the Full Article
  • Can Road Salt Change Sex Ratios in Frog Populations?

    Naturally occurring chemicals found in road salts commonly used to de-ice paved surfaces can alter the sex ratios in nearby frog populations, a phenomenon that could reduce the size and viability of species populations, according to a new study by scientists at Yale and Rensselaer Polytechnic Institute (RPI).

    >> Read the Full Article
  • Future PM2.5 air pollution over China

    With rapid industrialization and urbanization over the past decades, China has experienced widespread air pollution induced by fine particulate matter with a diameter of 2.5 µm or less (PM2.5). To protect human health and meet the newly implemented annual PM2.5 target (less than 35 µg m-3), great efforts are needed to reduce emissions effectively. It is, therefore, essential to understand how future PM2.5 concentrations are affected by changes in anthropogenic emissions. 

    >> Read the Full Article
  • The decline in emissions also has negative implications

    In large parts of Europe and North America, the decline in industrial emissions over the past 20 years has reduced pollution of the atmosphere and in turn of soils and water in many natural areas. The fact that this positive development can also have negative implications for these regions has been demonstrated by scientists at the Helmholtz Centre for Environmental Research (UFZ) in the journal Global Change Biology. According to their findings, declining nitrate concentrations in the riparian soils surrounding the tributary streams of reservoirs are responsible for the increasing release of dissolved organic carbon (DOC) and phosphate and a deterioration in water quality. In the case of drinking water reservoirs this can cause considerable problems with respect to water treatment.

    >> Read the Full Article
  • UNIST Researchers Turn Waste Gas into Road-Ready Diesel Fuel

    Climate change is one of the most serious threats facing the world today. With the effectuation of the Paris Agreement, there has been a rising interest on carbon capture and utilization (CCU).

    A new study, led by Professor Jae Sung Lee of Energy and Chemical Engineering at UNIST uncovers new ways to make biofuel from carbon dioxide (CO2), the most troublesome greenhouse gas. In their paper published in the journal Applied Catalysis B: Environmental, the team presented direct CO2 conversion to liquid transportation fuels by reacting with renewable hydrogen (H2) generated by solar water splitting.

     

    >> Read the Full Article
  • Why do seabirds eat plastic?

    Heartbreaking stories of seabirds eating plastic — and the accompanying horrible images— are everywhere, but now scientists are an important question: Why do seabirds eat plastic in the first place? And why are some more likely to have bellies full of plastic than others?

    The answer, it turns out, lies in a compound called dimethyl sulfide, or DMS, which emits a “chemical scream” that some birds associate with food. When seabirds find chunks of plastic bobbing in the water, they gobble them up, not realizing that they’ve just consumed something very dangerous.

    >> Read the Full Article
  • Researchers Develop Novel Approach for Quantifying Nitrate Discharge from Groundwater to Streams

    Researchers from North Carolina State University have developed a new way to determine the rate at which nitrate pollution will make its way from groundwater into streams. The work has implications for predicting long-term pollution in groundwater-fed streams.

    Nitrate pollution, primarily from fertilizer runoff, is one of the major freshwater contaminants in the United States. Additionally, the pollution persists in aquifers – and thus in groundwater – which feed into streams over a period of years or decades.

    >> Read the Full Article
  • New maps reveal safe locations for wastewater injection

    Stanford geophysicists have compiled the most detailed maps yet of the geologic forces controlling the locations, types and magnitudes of earthquakes in Texas and Oklahoma.

    These new “stress maps,” published in the journals Geophysical Research Letters and Bulletin of the Seismological Society of America, provide insight into the nature of the faults associated with recent temblors, many of which appear to have been triggered by the injection of wastewater deep underground.

    “These maps help explain why injection-induced earthquakes have occurred in some areas, and provide a basis for making quantitative predictions about the potential for seismic activity resulting from fluid injection,” said study co-author Mark Zoback, the Benjamin M. Page Professor of Geophysics in Stanford’s School of Earth, Energy & Environmental Sciences.

    >> Read the Full Article
  • Human health risks from hydroelectric projects

    In a new study, Harvard University researchers find over 90 percent of potential new Canadian hydroelectric projects are likely to increase concentrations of the neurotoxin methylmercury in food webs near indigenous communities. 

    The research forecasts potential human health impacts of hydroelectric projects and identifies areas where mitigation efforts, such as removing the top layer of soil before flooding, would be most helpful. The works uses factors such as soil carbon and reservoir design to forecast methylmercury increases for 22 hydroelectric reservoirs under consideration or construction in Canada.

    >> Read the Full Article
  • New Delhi Air Pollution Reaches Highest Level In 20 Years

    Indian officials declared an emergency in New Delhi over the weekend as the capital city entered its second week with air pollution levels as high as 30 times above World Health Organization guidelines, several news outlets reported.

    Construction sites have been closed, operations at a coal-fired power station halted, diesel generators stopped, and officials are preparing to reinstate traffic restrictions, all to reduce smog levels across the city, which have reached their highest levels in 20 years. Officials say field burning on nearby farmland and fireworks from the recent Diwali festival helped worsen the smog conditions. 

    >> Read the Full Article