Ocean Waves Following Sea Ice Loss Trigger Antarctic Ice Shelf Collapse

Typography

Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.

Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.

Lead author Dr Rob Massom, of the Australian Antarctic Division and the Antarctic Climate and Ecosystems Cooperative Research Centre, said that reduced sea ice coverage since the late 1980s led to increased exposure of ice shelves on the Antarctic Peninsula to ocean swells, causing them to flex and break.

“Sea ice acts as a protective buffer to ice shelves, by dampening destructive ocean swells before they reach the ice shelf edge,” Dr Massom said.

“But where there is loss of sea ice, storm-generated ocean swells can easily reach the exposed ice shelf, causing the first few kilometres of its outer margin to flex.”

“Over time, this flexing enlarges pre-existing fractures until long thin ‘sliver’ icebergs break away or ‘calve’ from the shelf front.”

Read more at University of Adelaide

Image: This is ice calving off an ice shelf in the Antarctic. (Credit: Ian Phillips, Australian Antarctic Division)