Less Ice, More Methane From Northern Lakes: A Result From Global Warming

Typography

Shorter and warmer winters lead to an increase in emissions of methane from northern lakes, according to a new study by scientists in Finland and the US. 

Shorter and warmer winters lead to an increase in emissions of methane from northern lakes, according to a new study by scientists in Finland and the US. Longer ice-free periods contribute to increased methane emissions. In Finland, emissions of methane from lakes could go up by as much as 60%.

An international study by scientists from Purdue University in the US, the University of Eastern Finland, the Finnish Environment Institute and the University of Helsinki published in Environmental Research Letters significantly enhances our current knowledge of methane emissions from boreal lakes. The backbone of the study is a large dataset on the distribution and characteristics of lakes and their methane emissions in Finland. Using this dataset and modelling tools, the scientists aimed to find out how methane emissions from northern lakes will change towards the end of this century as a result of global warming.

Lakes account for about 10% of the boreal landscape and are, globally, responsible for approximately 30% of biogenic methane emissions that have been found to increase under changing climate conditions. However, the quantification of this climate-sensitive methane source is fraught with large uncertainty under warming climate conditions. Only a few studies have addressed the mechanisms of climate impact on methane emissions from northern lakes.

Read more at University of Eastern Finland

Image: Shorter and warmer winters lead to an increase in emissions of methane from northern lakes. (Credit: Kristiina Martikainen)