New Modeling Technique Shows Greater Likelihood, Frequency of Extreme Heat Events in Urban Areas

Typography

Extreme heat waves in urban areas are much more likely than previously thought, according to a new modeling approach designed by researchers including CEE assistant professor Lei Zhao and alumnus Zhonghua Zheng (MS 16, PhD 20). 

Extreme heat waves in urban areas are much more likely than previously thought, according to a new modeling approach designed by researchers including CEE assistant professor Lei Zhao and alumnus Zhonghua Zheng (MS 16, PhD 20). Their paper with co-author Keith W. Oleson of the National Center for Atmospheric Research, “Large model structural uncertainty in global projections of urban heat waves,” is published in the journal Nature Communications.

Urban heat waves (UHWs) can be devastating; a 1995 heat wave in Chicago caused more than 1,000 deaths. Last year’s heat wave on the west coast caused wildfires. Global warming is expected to increase the incidence and severity of UHWs, but if cities fully understand their risk, they can prepare better with forecasts and warnings, safety guidance and improving access to health facilities like cooling centers and hospitals. Longer-term strategies include adaptation practices, which help cities adapt to the warmer temperatures induced by climate change – such as highly reflective roofs and pavements and green infrastructure – and mitigation practices, which help reduce the carbon emission – like renewable energy.

In recent years, though, an increase in record-breaking UHWs has caused concerns that the computer models used to predict them are flawed, leading to a systematic underestimation of their frequency and severity. Without accurate models, cities may dramatically misjudge their risk and fail to prepare accordingly, putting their citizens at greater risk as the world heats up.

Read more at University of Illinois Grainger College of Engineering

Photo Credit: geralt via Pixabay