Sea Level Rise Poses Particular Risk for Asian Megacities

Typography

Sea level rise this century may disproportionately affect certain Asian megacities as well as western tropical Pacific islands and the western Indian Ocean, according to new research that looks at the effects of natural sea level fluctuations on the projected rise due to climate change.

Sea level rise this century may disproportionately affect certain Asian megacities as well as western tropical Pacific islands and the western Indian Ocean, according to new research that looks at the effects of natural sea level fluctuations on the projected rise due to climate change.

The study, led by scientists at the French National Center for Scientific Research (CNRS) and University of La Rochelle in France and co-authored by a scientist at the National Center for Atmospheric Research (NCAR), mapped sea level hotspots around the globe. The research team identified several Asian megacities that may face especially significant risks by 2100 if society emits high levels of greenhouse gases: Chennai, Kolkata, Yangon, Bangkok, Ho Chi Minh City, and Manila.

Scientists have long known that sea levels will rise with increasing ocean temperatures, largely because water expands when it warms and melting ice sheets release more water into the oceans. Studies have also indicated that sea level rise will vary regionally because shifts in ocean currents will likely direct more water to certain coastlines, including the northeastern United States.

What’s notable about the new study is the way it incorporates naturally occurring sea level fluctuations caused by such events as El Niño or changes in the water cycle (a process known as internal climate variability). By using both a computer model of global climate and a specialized statistical model, the scientists could determine the extent to which these natural fluctuations can amplify or reduce the impact of climate change on sea level rise along certain coastlines.

Read more at National Center for Atmospheric Research/University Corporation for Atmospheric Research

Photo Credit: dylanagonzales2011 via Pixabay