A team of scientists from the Department of Energy's Oak Ridge National Laboratory and the University of Florida has developed a novel method that could yield lower-cost, higher-efficiency systems for water heating in residential buildings.

The theory behind the newly termed "semi-open" natural gas-fired design, explained in an ORNL-led paper published in Renewable Energy: An International Journal, reduces the cost and complexity of traditional closed gas-fired systems by streamlining, and even eliminating, certain components.

Read more ...

In many parts of the world, the only way to make germy water safe is by boiling, which consumes precious fuel, or by putting it out in the sun in a plastic bottle so ultraviolet rays will kill the microbes. But because UV rays carry only 4 percent of the sun's total energy, the UV method takes six to 48 hours, limiting the amount of water people can disinfect this way.

Now researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have created a nanostructured device, about half the size of a postage stamp, that disinfects water much faster than the UV method by also making use of the visible part of the solar spectrum, which contains 50 percent of the sun's energy.

Read more ...

The balmy waters of the Caribbean could turn into a deadly heat trap for countless tiny creatures. Authors of a new study conducted at the Smithsonian Tropical Research Institute (STRI) in Panama discovered that microscopic sea urchin eggs and larvae may suffer stunting or death when the water temperature spikes just a couple of degrees above normal, adding to the impact of climate change in already warm tropical oceans.

Sea urchins, pincushion-shaped relatives of the starfish, graze the sea floor from shallow coastal areas to deep ocean vents from pole to pole. Their young look nothing like them. Adults release millions of eggs and sperm into the water, which develop into pinprick-sized free-swimming larvae. Only a minute fraction will survive and metamorphose into adults. Scientists think the developmental stages from egg to larvae are extra sensitive to temperature changes, but very few studies compare the vulnerability of the offspring to that of the adults.

Read more ...

You've seen it when flying into major cities the world over: a haze over the city. It is caused by aerosol particles, but scientists don't know all the details of the complex chemistry involved. At Pacific Northwest National Laboratory, Dr. Alla Zelenyuk and her team took on a specific part of that haze: originated from isoprene. After being released by the trees and shrubs, isoprene reacts in the atmosphere and becomes assorted chemicals, including IEPOX (isoprene epoxydiols). The team found that IEPOX is a major player in producing aerosols from isoprene and that particle size, certain coatings, and acidity influence how IEPOX behaves. 

Read more ...

More Articles ...

Subcategories