Satellite Study of Amazon Rainforest Land Cover Gives Insight into 2019 Fires

Typography

Throughout August and early September 2019, media around the world have reported on the extensive forest fires ravaging Brazil’s Amazon rainforest. 

Throughout August and early September 2019, media around the world have reported on the extensive forest fires ravaging Brazil’s Amazon rainforest. Much of the concern stems from the Amazon’s significance to regulating the world’s climate. According to the Associated Press, the Amazon absorbs 2 billion tons of carbon dioxide every year — about 5% of global emissions. Thus, fires in the region eat away at this carbon-absorbing capacity while at the same time adding carbon to the air through burning.

A recent study in the peer-reviewed journal Ecohydrology headed by University of Kansas researcher Gabriel de Oliveira gives important context to the fires burning big swaths of the Amazon today, most of which were set intentionally by farmers and ranchers to convert forest into land suitable for grazing animals or growing crops. The researchers sought to discover how these changes to land cover affect the exchange of water and heat between the surface of the Amazon and the atmosphere overhead.

“This is the first study to examine the biosphere-atmosphere interactions in the Amazon with such high spatial resolution satellite imagery,” said de Oliveira, a postdoctoral researcher in the Department of Geography & Atmospheric Science at KU. “We tried to understand the impacts of land-cover changes and deforestation in general. When you clear-cut the forests, and you convert it either to pasture or agriculture — or cut the forest, but for some reason don't plant anything and then have a type of vegetation called ‘secondary succession’ — our idea was to try to understand how that impacts energy, like the radiative fluxes and water fluxes, or evaporation in general.”

Read more at University of Kansas

Image: The land-use study combining data from satellites and flux tower was headed by University of Kansas investigator Gabriel de Oliveira. (Credit: Gabriel de Oliveira)